Role of chemokines, neuronal projections, and the blood-brain barrier in the enhancement of cerebral EAE following focal brain damage.

نویسندگان

  • D Sun
  • M Tani
  • T A Newman
  • K Krivacic
  • M Phillips
  • A Chernosky
  • P Gill
  • T Wei
  • K J Griswold
  • R M Ransohoff
  • R O Weller
چکیده

The role of focal brain damage as a trigger for autoimmune inflammation in multiple sclerosis (MS) is unclear. In this study we examine mechanisms by which experimental autoimmune encephalomyelitis (EAE) is enhanced by focal brain damage. EAE was produced in Lewis rats by footpad inoculation; focal brain damage, in the form of a cortical cryolesion (cryolesion-EAE), was induced 8 days post-inoculation (d.p.i.). The distribution of inflammation and chemokine production in cryolesion-EAE and EAE-only were compared. Inflammation in the brain, measured by immunocytochemistry for T lymphocytes (W3/13) and microglial activation (MHC class II -OX6), was significantly enhanced in cryolesion-EAE 11-15 d.p.i. (p < 0.01-0.05) but by 20-40 d.p.i., equated with EAE-only. Inflammation in cryolesion-EAE related to breakdown of the blood-brain barrier (BBB) at the site of the cryolesion and also to the corticospinal tracts and thalamus, reflecting the afferent and efferent neuronal connections with the cryolesioned cortex. Semiquantitative RT/PCR dot-blot hybridization assay showed a 6-fold increase in mRNA for specific chemokines in the brain in cryolesion-EAE at 9 d.p.i. (MCP-1) and 11 d.p.i. (MCP-1 and MCP-5) with no significant increase in RANTES, GRO-alpha, or MIP-1alpha. By 14 d.p.i., the levels of MCP-1 and MCP-5 mRNA equated with EAE-only animals. These results suggest that enhancement and location of autoimmune inflammation in the brain following focal cortical injury initially involve chemokines such as the macrophage chemoattractants MCP-1 and MCP-5, and the activities of afferent and efferent neuronal connections with the site of damage. By analogy, similar factors may modulate or reactivate autoimmune inflammation in MS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Peroxisome Proliferator Activator Receptor Alpha in Cerebral Ischemia-Reperfusion Injury; a Review Study

Peroxisome proliferator-activated receptor alpha (PPAR-α), which belongs to the nuclear receptor family of ligand-activated transcription factors, was first described as gene regulators for metabolic pathways including lipid metabolism, insulin sensitivity, and glucose homeostasis. Were raised. This nuclear receptor is widely expressed in various tissues, providing a wide range of effects to st...

متن کامل

Quantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat

Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...

متن کامل

Inhibition of nitric oxide synthase activity improves focal cerebral damage induced by cerebral ischemia/reperfusion in normotensive rats

Introduction: Nitric oxide seems to play a dual role in ischemia/reperfusion injury. Few studies have investigated whether it exacerbates or improves brain edema. In the present study, we inhibited the activity of nitric oxide synthase by L-NAME and evaluated the cerebral infarct volume, tissue swelling and brain edema, alongside the measurement of blood flow of the ischemic region. Methods...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Candesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats

Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 59 12  شماره 

صفحات  -

تاریخ انتشار 2000